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Abstract

A methodology for accurate and efficient simula-

tion of unsteady, compressible flows is presented. The

cornerstones of the methodology are a special discretizao

tion of the Navier-Stokes equations on structured body-

fitted grid systems and an efficient solution-adaptive

mesh refinement technique for structured grids. The

discretization employs an explicit multidimensional up-
wind scheme for the inviscid fluxes and an implicit
treatment of the viscous terms. The mesh refinement

technique is based on the AMR algorithm of Berger and

Colella ( J. Comp. Phys., Vol. 82, pp. 64-84, 1989). In

this approach, cells on each level of refinement are or-

ganized into a small number of topologically rectangu-

lar blocks, each containing several thousand cells. The
small number of blocks leads to small overhead in man-

aging data. while their size and regular topology means
that a high degree of optimization can be achieved on

computers with vector processors.

Introduction

Many flows of interest to scientists and engineers

are fundamentally unsteady in character. Yet, when

computational methods are used to analyze such flows,

the effects of unsteadiness are often neglected and the

flows are simply modeled as steady. The use of Com-

putational Fluid Dynamics (CFD) in the design of gas
turbine engines is a prime example of this practice. The

flow of gases through multi-stage compressors and tur-

bines is typically modeled, stage by stage, as steady.
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Any unsteadiness due to passage of wakes from up-

stream blade rows is ignored. At best, the effects of

unsteadiness is accounted for through empirical cor-

relations (see e.g., Ref. 1). The reason behind this

"pragmatic" approach is that with current computer
resources and CFD algorithms, accurate simulations of

unsteady viscous flows in turbomachinery are forbid-

dingly expensive. CFD algorithms that minimize the
cost of such simulations while guaranteeing sufficient

accuracy are needed.

For simulating steady and unsteady inviscid flows,

techniques that combine high resolution shock captur-

ing schemes with unstructured grid systems and solu-

tion adaptive mesh refinement have proven quite suc-

cessful in recent years (see, e.g., Ref. 2-5). Most of

these techniques tessellate the flow domain using either

fully unstructured grid systems (triangles and tetrahe-

dra) or a patchwork of non-boundary-conforming Carte-
sian grids. The attractive feature of such grid systems

is that they can be generated quickly and autonomously

for geometries of arbitrary complexity, significantly re-

ducing the man-hours needed for problem setup.

For viscous flows, these same techniques have not

yet brought the same success. Several factors con-

tribute to this lack of success. First, adequately resolv-

ing boundary layers in high Reynolds number flows has

proven difficult.6, ? Second, the non-trivial data struc-

tures required for unstructured grids do not lend them-

selves to high level of optimization on computers with

vector processors. This can be a particularly serious

drawbaek in simulations of viscous flows which require
far greater resolution of the flow field than do inviscid

flows and, hence, greater computational efficiency. The

difficulty is often exacerbated by a significantly greater

memory usage of computer codes employing unstruc-
tured grids compared to codes employing structured,

body-fitted grid systems. Finally, performance of im-
plicit discretizations on unstructured grids has not been

satisfactoryfi While this is not a serious limitation for



inviscidflows,it can be a major limitation in simu-

lations of viscous flows due to cell-Reynolds number
constraint on the allowable time step size of explicit
schemes.

Compared to unstructured and non-boundary-con-

forming Cartesian grids, structured body-fitted grid sys-

tems offer many advantages related to accuracy and

efficiency in simulations of viscous flows. Specifically,

boundary layers can be resolved very efficiently with

structured body-fitted grids. Also, the regularity of the

grid system admits simple array data structures, facil-

itating optimization and vectorization of the computer

codes. The regularity of the grids likewise facilitates
application of implicit discretizations. Finally, genera-

tion of structured grids is becoming easier than ever be-

fore. Recent developments in techniques for generating

high quality, structured, body-fitted, multiblock grid
systems 8-12 indicate that same level of autonomy can

be achieved in generation of structured grids for compli-

cated geometries as in generation of unstructured grids.

To minimize cost of simulations that use struc-

tured grid systems and to enhance acuracy of the com-

puted results, techniques need to be developed for per-

forming local solution-adaptive refinement in structured

grids. Such techniques must avoid the complicated data
structures on the cell level that are used in unstructured

grids, or else many of the important advantages articu-

lated above will be lost. One grid refinement technique,

generally applied to Cartesian grids, appears exception-

ally suitable for structured grids. This technique is the

AMR (Adaptive Mesh Refinement) algorithm of Berger

and ColeUa. 13 The AMR algorithm takes advantage of

the fact that, on a given grid system, cells that require
refinement come in clusters--a whole area needs refine-

ment rather than single cells. The AMR algorithm or-
ganizes these clusters of cells into a small number of

topologically rectangular blocks, each containing a few
thousand cells. Thus, simple and efficient array data

structures can be used for storage of data in each grid

block and a block-structured grid can be maintained on
every level of refinement. The relatively small number

of blocks leads to small overhead in manipulation of
data during computations.

The objective of this research is to develop an

efficient methodology for performing accurate simula-

tions of unsteady viscous flows that capitalizes on the
advantages of structured grid systems. Cornerstones

of the new methodology include a special discretiza-
tion of the compressible Navier-Stokes equations that

is designed especially for accuracy and efficiency, and a
solution-adaptive mesh refinement technique for struc-

tured, curvilinear grid systems that is based on the

AMR algorithm of Berger and Colella. 13 The discretiza-

tion employed is second order accurate in both space

and time. It combines the explicit multi-dimensional
upwind scheme of Colella 14 for the inviscid fluxes with

an implicit scheme for the diffusion terms. The multi-

dimensional upwind scheme has proven highly accu-

rate in computations of inviscid :[lOWS, 14,5 while the

implicit treatment of the diffusion terms significantly

improves the robustness and computational efficiency

of the scheme by eliminating the cell Reynolds num-
ber constraint on the time step size that results from

explicit treatment of the viscous terms. The use of solu-

tion adaptive mesh refinement enhances both accuracy

and efficiency of the scheme by providing high mesh res-
olution in regions where it is required, but only where

it is required.

This paper focuses on only a few main a._pects

of this ongoing research. These aspects are the dis-

cretization of the governing equations, the extension

of the AMR algorithm to structured, body fitted grid

systems, and implementation of the AMR algorithm

using a mixed language programming (C++ and FOR-

TITAN). Some sample results are shown at the end of
the paper.

Governing Equations and Discretization

The governing equations employed are the com-

pressible Navier-Stokes equations (see e.g., Ref. 15).

The fluid is taken to be a calorically and thermally

perfect gas. Transformed to general curvilinear coor-

dinates (_,y) and cast in conservation law form, the

governing equations can be written as

O(JU) OF_ OF '7 OF_ OF_

O---t--+ -_- + Oy O_ Or/ - 0 (1)

where U = (p pu pv pe) r is the vector of conserved

variables: density, momentum per unit volume in the

x- and y-coordinate directions, and total energy per
unit volume, respectively, and J is the transformation

Jacobian. F_ and F _ represent the inviscid fluxes in

the _ and y directions, respectively, whereas F_ and F_

represent the viscous fluxes. Temperature is related to
the remaining variables through

T= (7- 1)(e- 1(u2+v2)) (2)

For details of the fluxes see e.g., Ref. 16.

The governing equations are discretized using a
hybrid explicit-implicit, cell-centered, finite volume dis-

cretization on curvilinear, structured grids. The dis-

cretized equations for cell (i,j) are written as follows:



u_+1- u,_ + L_Au")
aij At

- _ (LTAu-)+ LTj(V"+I))= 0 (3)

where aij is the area of cell (i,j), Li_ represents the
discretization of the convection terms in Eq. (1) and

Lid represents the discretization of the viscous terms.

The operator Li_ is derived using a straightforward
extension of the multi-dimensional upwind method of

Colella 14 to viscous flows. In this method, Li_ is written
as follows:

A Fn+l/2 " ^ ,_.+1/2
LCj(Un) = l'Aai+l/2,J i+I/2,j l'£ai-1/2,j1'i-1/2,j

A _n+l/2 -- _:_n+1/2

+ _ai,i+l/2_'id+a/2 -- _ai,i-I/2ri,i-1/2 (4)

where Aai+l/2,j is the area of cell face (i + 1/2,j) (be-

tween cells (i,j) and (i+ 1,j)), Aaid+l/2, is the area of
cell face (i,j + 1/2) (between cells (i,j) and (i,j + 1)),

k-_n+l/2 17n+1/2
and. i+l/2,j and. i,j+l/2 are the numerical fluxes nor-
mal to those faces. To illustrate how the fluxes are evai-

_n+1/2
uated, consider cell face (i + 1/2,j). The flux. i+l/2j
is evaluated using an approximate Riemann solver and
can be written as:

]5_n+l/2 = I_[TTn+I/2 /7n+1/2
" /+l/2,j --k'i+l/2,j,L' _i+l/2,j,R' ni+l/2,J) (5)

where subscripts "L" and "R" indicate "left" and "right"

state for the Riemann solver, ni±l/2,j is the unit normal
to the cell face at (i + 1/2,j) and

Ui.+x/2 A_ OU At OU
:_/2,j,_= u_ + 5- o--_+ T 0-7

The operator Lid can be written as

0
L_j(v)= LTj(v)

L_j(T) + Lidj (V)/

(7)

where L_(V), L_j(T) and Ld/(v) represent the vis-
cous terms of the momentum equations, the conduc-

tion terms of the total energy equation and the viscous

dissipation term of the total energy equation, respec-

tively. V = (u,v) is the velocity vector. L,'_, L,k and

L4. are approximated in conservative fashion using cen-
'3

tral differencing on a standard nine point stencil. In the

interest of brevity, these are not detailed here. Note,

for constant viscosity and conductivity, the operators

Li_ , and L_j are linear.

To facilitate advancing the solution in time, Eq.

(3) is expressed as a two step scheme as follows:

At_ At v n

= _" - --L_j(u") + _--&Av )
t3 Uij za_j

(8a)

u_+_ at L_(u"+') = v,_ (Sb)
2aij J

The first step, namely the evaluation of Ui*i, is a purely
explicit computation. The second step, involving the

implicit part of the viscous operator, requires resolution

of a system of equations. This step can be broken up

into smaller equation sets as follows: Since the viscous

terms do not contribute to the continuity equation, Eq.

(8b) can immediately be cast as

&+l = .,5 (9_)

Using Eq. (1), we can write

U.+X/2 . A_ OU
+1/2,_,s = U_j =1:20_ (6)

2J_j + O_ O_

In the above, the subscript S stands for "L" when state

at face (i - 1/2,j) is evaluated and "R" when state at

face (i + 1/2,j) is evaluated. The complete formula for
U,+1/2

i+1/2,i,s is then obtained by appropriately discretizing
the derivative terms in Eq. (6). For the viscous terms,

L_i(U" ) (described below) is used unchanged, whereas
the convection terms are treated exactly as shown in
Ref. 14.

vb+' At z_v-+,_ = (pv),'j
2.F,_,_,j,_ , _ = vzj (0b)

(pe)_+l At (L_i(T,+X) + L_i(V,+_)) = (pe)i. _

If viscosity is constant, or if it can be lagged in time

behind the conserved variables, Eq. (9b) effectively de-

couples from Eq. (9c). It can thus be inverted first.

Once Eq. (9b) has been inverted and V_ +x is known,
Eq. (2) can be used to recast Eq. (9c) as

Ti_ +1 -- (7- 1) At L_../Tn+I_ (10)
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/

(11)
Both Eq. (gb) and Eq. (10) are linear systems

of equations. They can be inverted using a variety of

methods. Here, a Gauss-Seidel relaxation scheme is

used with red-black ordering of the unknowns. Multi-

grid scheme can be used very effectively to accelerate

convergence of this relaxation scheme.

AMR Algorithm for

Structured Curvilinear Grid Systems

One of the cornerstones of the present methodol-

ogy is the use of solution-adaptive mesh refinement in
structured, body-fitted grid systems. In this approach,

a relatively uniform body-fitted grid system is used to

provide the initial tessellation of the flow domain. Since

solution-adaptive refinement is to be used, there is little
need during the grid generation to cluster grid points

near walls or in other regions where high resolution of

the flow field is anticipated to be needed. Consequently,

the structured grid system can be optimized with re-

spect to smoothness and orthogonality alone. In gen-

eral, high quality grids can be obtained this way since

grid spacing is not a primary concern during the grid
generation.

The AMR Algorithm

The grid refinement algorithm that best comple-

ments the use of structured grid systems is the AMR

algorithm of Berger and Colella. 13 In the AMR algo-

rithm, the computed solution exists on a sequence of

mesh levels with finer and finer grids (see Fig. 1). The

co_sest mesh level covers the entire physical domain

of interest. Each finer mesh level is created by refining

cells on the next coarser level in regions where greater

resolution of the flow field is judged to be needed. A
fine mesh levels typically covers only a small part of

the domain and is contained in its entirety within the

next coarser level. Furthermore, the boundary of the

fine mesh level must lie a certain distance (measured in
number of cells) from the boundary of the next coarser

level, except where the boundaries of both levels coin-

cide with the boundary of the physical domain. This is

called "proper nesting" of the mesh levels. Proper nest-

ing is required so that sufficiently accurate boundary
conditions can be supplied to the fine grid at coarse-fine

grid interfaces (see e.g., Ref 13,17). Each mesh level is

a union of topolgically rectangular blocks. Therein lies

the congruence between the use of structured grid sys-

tems and the AMR algorithm. This allows the block
to be the unit of operation in a computer code. Some
flexible data structures are needed in the codes to allow

blocks to be created and deleted. These data structures

require only small overhead in the codes since the num-

ber of blocks is relatively small. Within each block,

however, regular arrays can be used very effectively,

contributing to the overall efficiency of the method.

In the AMR algorithm, the generation and main-

tenance of the hierarchy of mesh level takes place es-

sentially as follows: Assume there exist a hierarchy of

mesh levels and solutions on those levels (in the begin-

ning, the hierarchy is simply the starting coarsest grid

and the solution is the initial condition). At regular

intervals, error in each cell on a given level is estimated
using some suitable measure. Cells where the error ex-

ceeds a specified limit are tagged for refinement. Errors

on all finer levels are also checked and cells tagged for

refinement. Next, tags on the finer levels are propa-

gated "down" to the subsequently coarser and coarser
levels, until the level where the error estimation started

is reached. During this process, additional ceils are

tagged on the coarser levels to ensure that any finer lev-

els will be properly nested. Once the tagging of ceils is

completed, a special algorithm (see Ref. 13) fits a lim-

ited number of topolgically rectangular blocks around
the tagged cells on each level. The mesh within these

blocks is then refined by an integer ratio to create new
fine mesh levels. The solution in the old fine mesh levels

is then copied onto the new mesh levels where the two

overlap. In regions where new fine grid cells have been
created, the fine solution is obtained by interpolation

on the next coarser grid. Note, by this procedure, fine

grid cells can be removed as well as created. Note also
that the mesh level where the error estimation started

does not change. In this work, error is estimated us-

ing a procedure based on Richardson extrapolation (see

Ref. 13).

Refinement of Curvilinear Grids

In the current methodology, refined curvilinear

grid systems must be generated from an existing coarser

curvilinear grid. This grid refinement must be done

carefully to ensure sufficiently smooth grids on all levels

of refinement. It is not sufficient to simply connect grid
points on the coarse grid by straight lines and divide

the lines into equal segments. This would lead to non-

smooth grids on the finer levels and to loss in accuracy.
Therefore a more elaborate grid refinement scheme is

needed to ensure sufficient smoothness of the fine grids.



In thisstudy,thegridrefinementisdonebycom-
biningparametriccubicsplineinterpolationandsim-
plifiedHermiteinterpolation.Thecubicsplines,here
naturalcubicsplines,areusedto "reconstruct"thegrid
linesfromthediscretegrid points.Theinterpolation
isdonegridlinebygridlineandproducescubicpoly-
nomialsthat bridgebetweenanytwoneighboringgrid
pointson a grid line. Theparametersusedin con-
structingthesplinesaresimplythecoordinatesofthe
computationaldomain.Thischoiceautomaticallycap-
turesanynonuniformityof thegrid spacing(e.g.,grid
stretching)in theoriginalgrid. Thus,whennewgrid
pointsare needed on the grid lines of the original grid,

uniform spacing in the parameter produces a smooth

grid. When new grid points are needed that lie in the
interior of a coarse grid cell, the simplified Hermite in-

terpolation is used to bridge between the four cubic

polynomials that define the edges of the coarse grid

cell. Full Hermite interpolation allows the enforcement
of both the shape of the edges and also direction of grid

lines transverse to the edges (transverse derivatives). In

this usage, however, it is not necessary to enforce trans-
verse derivatives. Hence the simplified version is used.

As in the construction of the cubic splines, the param-

eters used in the Hermite interpolation are the compu-

tational coordinates of the coarse grid system. Uniform

spacing in these parameters produces a smooth refined

grid in the interior of the cell. Note, since the poly-

nomials describing the shape of the edges of the cell
were constructed using cubic splines, the overall refined

grid system, obtained by refining the coarse grid cell by
cell, will be smooth and at least C 1 continuous. Math-

ematical formulation of the grid refinement scheme is
as follows:

Assume we want to refine cell (i,j). The corners

of the cell are the nodes (i,j), (i + 1,j), (i,j + 1), and

(i + 1,j + 1). The physical coordinates of node (i,j) is

denoted by rij. The tangential derivative in the direc-

tion of the i-coordinate is denoted by sij, whereas the

tangential derivative in the direction of the j-coordinate

is denoted by tlj. The sij and tij are obtained through
the cubic spline interpolation. Let _ be the parameter

that varies along the/-grid lines and r/be the param-

eter that varies along the j grid lines. Without loss of

generality, we can assume that (_, r/) = (0, 0) at node

(i,j) and (_,7/) = (1,1) at node (i+l,j+ 1). Now, the
parametric formulas for the edges of cell (i,j) can be
written as

ri,j_l/2(_) -_- rijhl (_) + ri+ldh2(_)

+ si/h3(_) q- si+l,jh4(_) (12a)

where

ri,j+l/_ (_) = ri,/+l ha (_) + ri+l,j+x h2 (_)

+ si,j+lh3(_) + si+l,j+lh4(_) (12b)

ri-1/9,1(_ ) = rijhl(_) -1-ri,j+lh2(rl)

+ tijhz(rl) + ti,j+lh4(r/) (12c)

ri+1/2,1 (r/) = ri+l,j hi (r/) q- ri+l.j+l h2 (r/)

+ti+l,jh3(_?) + ti+l,j+lh4(r/) (12d)

hl(_) = 1-3_ _ +2_ 3 (13a)
h_(_) = 3_2 - 2__ (13b)
h_(_) = _-2_ _ +_ (13c)
h,(u) = -u s +u 3 (13d)

are the Hermite interpolants. Note,

hi(0)=1, h_(1)=h_(O)=hi(1) = 0;

h2(1)= 1, hz(0)=h_(0)=h_(1)=0;

h_(0) = 1, h3(0) = h3(1) = h_(1) = 0;

h_(1)=l, h4(0)=h,(1)=h;(0)=0.

Now simplified Hermite interpolation can be written as

r(_, r/) = ri,j-1/2(_)hl (r/)+ ri,j+l/2 (_)hz(r/)
+ ri_l/2d(_)hl(_) + ri+a/_j(y)h2(_) (14)
- _jhl(_)h_(O) - r_+_,jh2(_)h_(_)
- rid+lhl(_)h2(y) - ri+ld+lh2(_)h2(rl)

The function r(_, r/) effectively reconstructs a transfor-
mation from the computational domain to the physical

domain. Using this transformation, the grid points for

the fine grid are placed at uniform intervals in the pa-

rameters _ and r/.

The method described above for refining the grid

system produces smooth grids as it was designed to.

However, a small complication arises if the flow solver

is designed to work with cells whose edges are taken to

be straight lines. In this case, the fine grid cells "seen"

by the flow solver do not in general match with the

coarse grid cells. This is illustrated in Fig. 2. This

complicates any inter-grid transfer operators used in

interpolation of coarse grid data to the fine grid and

in coarsening of the fine grid data, particularly if con-

servation mass, momentum and total energy, in the op-
eration is to be ensured. In Ref. 18, efficient transfer

operators were designed for this purpose. An alterna-

tive approach used here is to let the flow solver take



theshapeof thecellsintoaccount.For2-Dproblems,
thisonlyrequiresthat theareaofthecellsbecomputed
usingthecorrectshape. For the formulation used here
to refine the cells (see Eq. 12-14), the area, a, of a cell

is efficiently computed as follows:

a = dxdy = _ div(r)dxdy

=- . nds = _ r. nds
2 _ c,

(15)

where r -- (x,y), C denotes the cell, 6C denotes the

edges of the cell, n is the outward pointing normal to
the cell. The summation is over the-faces of the cell.

The direction of integration around the cell is taken to
be counter clockwise. This makes the normal n point to

the right relative to the direction of integration. After

a little algebra it can be shown that when the cells are

defined by the cubic polynomials, the integral over a
cell face is

c, r. nds = _(xayb - xbya)

+f (ra, (dr/ds) a , rb, (drlds)b) (16)

where

/ (ra, (drlds) a , rb, (drlds)b) =

1 dy
(17)

In the above, subscripts "a" and "b" indicate the begin-

ning node and end node on the edge, corresponding to
the direction in which the parameter "s" in the integral

varies. Note, the first term in Eq. (15) corresponds to

integration along a straight line from ra to r_. The sec-
ond term, therefore, can be thought of as a correction

to the integral corresponding to the deviation of the

curve from a straight line curve. Changing the direc-

tion of integration in Eq. (16)(while keeping a normal

pointing to the right) simply changes the sign of the

results, i.e.,

/ (ra, (dr/ds) a , rb, (dr/ds)b) =

- / (rb,- (dr/ds) b ,ra,- (drlds) a)

(i8)

A.pplying Eq.

with the notation of Eq. (12-14), we obtain

o'ij ---- O'_j

+ / (r_i, sii, ri+ 1,i, s_+1,i)

+ ! (ri+l,i, ti+15, ri+l,j+l, ti+l,j+l )

+ f (ri+lj+l, -Si+lj+1, r_,j+1,-s_,j+1)

+ f (rij+l, --ti,j+l, rij, -ti,i)

where

(14-16) to cell (i,j), and keeping

(19)

1

U_j -_ _ (_i+1,j+1 -- Xi,j) (Yi+l,j+l -- Yl,j) (20)

1 (z_+l,j - xi,i+l) (Yi+lj -- Yi,j+l)
2

is the area of a cell whose faces are straight lines. Equa-

tion (19) can finally be written as

= + (/,+,/2,j

- (fi,j+l/2 - fi,j-1/2)

(21)

where

/i+l/2j -- f(ri+lj,ti+l,j,ri+l,j+l,ti+l,j+l) (22a)

fi,j+l/2 =/(r_,j+l,si,j+l,r_+l,j+l,s_+15+l) (22b)

As Eq. (21) and (22) suggest, a_j for a block of cells

is most efficiently computed by evaluating fi+l/2,j and

fij+l/2 for the edges of the mesh and adding the cor-

rection to a_j.

Note, to ensure that cell edges on the coarsest grid

level always coincide with grid lines on the finer levels,
the grids on all finer levels are obtained by refining

the coarsest level. Consequently, the spline coefficients

used to reconstruct the grid lines need only be known
for the nodes on the coarsest level.

Transfer of Data Between Levels

When new fine grids are created the solution on

that grid must be initialized by interpolating the data

on the underlying coarse grid. Interpolation from coarse

grids is also needed at interfaces between coarse and
fine grids to provide boundary conditions for the fine

grid. Also, when fine grids are deleted, the data from

those grids must be transferred to the underlying coarse

grid. In all cases the transfer of data must ensure con-
servation of mass, momentum and total energy in or-

der to maintain accuracy and, for example, to maintain

correct speed of moving discontinuities such as shocks.
With thecurrent definition of cells, the transfer of data

from a fine grid to a coarse grid is accomplished by sim-

ply adding up the mass, momentum and total energy



in all thefinegridcells that correspond to a particu-
lar coarse grid cell. Transfer of data from coarse to fine

grids is currently done using a conservative linear inter-

polation as shown in Ref. 18. That particular approach
works well on relatively uniform grids but may need to

be improved for grids with rapidly changing cell areas

(Jacobians).

Implement ation--Obiect-Orient ed

Mixed Language Programming

Implementation of a solution adaptive mesh re-

finement algorithm like the AMR algorithm described

above, requires the use of programming languages that

support dynamic memory allocation (and de-allocation)

and user-defined data structures. Thh former capabil-

ity is needed so that mesh levels and blocks can be

created and deleted extemporaneously as the solution

developes in time. The latter capability is desirable so

that effective organization of the data can be done sys-

tematically and autonomously in the computer codes.
Programming languages that offer both capabilities in-
clude C and C++. FORTRAN90 will also offer some

of those capabilities.

While dynamic memory management and flexible

data structures are needed for an effective implemen-

tation of the methodology, efficient floating point op-
erations are also needed for fast execution of the code.

The programming language that currently offers the

most efficient floating point operations, particularly on

vector supercomputers, is FORTRAN77 (due to highly

developed compilers). This language does not, how-
ever, have the needed capabilities for memory manage-

ment and data structures. Fortunately, the modularity

of the AMR algorithm allows one to take advantage of

the strength of the different programming languages.

FORTRAN can be used very efficiently to implement all

operations within a block that are related to advancing

the solution in time, computing fluxes, applying physi-
cal boundary conditions, etc. A driver module that al-

locates memory for blocks, controls the time stepping,
error estimation and refinement, and calls the FOR-

TRAN routines can then be implemented in another

programming language.

In this work, the AMR driver module was imple-

mented using the C++ programming language. This
language is very well suited for this purpose due to its

support for object oriented programming and well de-

fined procedure for calling FORTRAN programs. As
the AMR algorithm suggests, the basic object in the

implementation is the block. The corresponding class
in the code is called "LevelBlock." A chzss in C++ is a

user defined type and consists of data and a collection
of functions (member functions) that operate on the

data. In this case, the data in "LevelBlock" consist of

arrays for the conserved variables, primitive variables
and metrics, and a special data type for information

about physical boundary conditions for the block. The
member functions include functions that call the FOR-

TRAN implemented flow solver. A second object in the

implementation is a class called "MeshLevel." The data
in this class includes the collection of "LevelBlocks"

that make up a single mesh level, and pointers to the

"MeshLevel" objects that contain the next coarser and

next finer mesh levels. In this work, extensive use was

made of the AMR library developed by Crutchfield and
Welcome. 19 The AMR library is a collection of dimen-

sion independent classes specially designed to aid in

implementation of schemes employing the AMR algo-
rithm.

Results

When this paper is written, the methodology de-

scribed in previous sections has only been tested on

a number of test cases involving inviscid flow. Here,

three such cases are presented. These are a subsonic

flow over a NACA0012 airfoil, a transonic flow over a
NACA0012 airfoil, and a supersonic flow over a blunt

body. In all cases only one level of refinement is used
with a refinement ratio of four.

NACA0012 airfoil at M = 0.5

The first test case is a subsonic flow over a NACA-

0012 airfoil at zero angle of attack. The free stream

Mach number (M) in this case was taken to be 0.5. To

take advantage of the symmetry of the geometry, the
computations were restricted to the half-plane above

the airfoil. The starting (coarse) grid used in the com-

putations contained 32 by 72 cells. The far field bound-

aries of the grid system were between 50 and 100 chords

from the airfoil. Figure 3 shows the center region of the

grid to a distance of about 4 chord lengths from the air-

foil. This coarse grid has only 12 cells over the surface

of the airfoil (on one side), and 48 cells after refinement.

Figure 4 shows the region around the airfoil that was
refined and Fig. 5 shows contours of pressure coefficient

near the air foil. The refined region consisted of three

blocks. A total of 9.5% of the coarse grid cells were
refined. The computed solution compares well with ex-

perimental data published in Ref. 20. According to
this data the minimum pressure coefficient at the sur-

face is °0.4687, compared to computed value of-0.471,
an error of about one half a percent.



NACA0012 airfoil at M = 0.8

The second test case is a transonic flow over a

NACA0012 airfoil at zero angle of attack. The free
stream Mach number was taken to be 0.8. The start-

ing grid system was the same as described above and
shown in Fig. 3. Figure 6 shows the refined grid system,

and the computed pressure coefficient is shown in Fig's

7 and 8. As seen in Fig. 6, the refined grid consisted
of two blocks. Fewer than 12% of the coarse grid cells

were refined, corresponding to a savings by a factor of

more than eight if the entire grid had been refined. The

present scheme resolves the shock on the airfoil very

crisply, within only two cells. As seen in Fig's 7 and 8,
the location of the shock is at about 48% chord. Ac-

chording to experimental data reported in Ref. 20, the
correct shock location is 40% to 44% chord. The rea-

son for the discrepancy is lack of resolution--experience

with similar geometries indicate that with one extra

level of refinement located right over the shock, the

correct shock location and strength will be predicted
with the current scheme.

Conclusions

In this paper, a methodology is proposed for sim-

ulating unsteady viscous and inviscid flows. The cor-

nerstones of the methodology are the use of structured

(multiblock) grid systems, solution adaptive mesh re-

finement based on the AMR algorithm of Berger and
Colella 13, and a hybrid explicit-implicit discretization

of the Navier-Stokes equations. The methodology is im-

plemented in a computer code which is written using

mixed language programming--C++ for a driver mod-
ule and FORTRAN for a flow solver module. At this

point only limited tests of the methodology have been
performed. Overall, the results of those tests were very

good. However, it was found that the simple interpola-

tion scheme used to transfer data from coarse grids to

fine grids did not work sufficiently well on meshes with

rapldly changing grid spacing in two directions at the

same time. Further development in this area is needed.

The development and testing of the methodology is on-

going.

Supersonic flow over a blunt body at M -- 5

The last test case is a supersonic flow over a

26.50 ° wedge with a round leading edge. The lead-
ing edge is a cylindrical surface whose radius is 0.125
in the current scale. The free stream flow is at M = 5

and a detached bow shock is formed.

The grid system at the end of the computations

is shown in Fig. 9. Figures 10 and 11 show contours

of density and entropy, respectively, around the wedge,

whereas, Fig. 12 shows plot of density on the stagna-

tion streamline versus axial location. As Fig. 9 shows,

the refined grid consisted of several topologically rect-
angular boxes. The refinement has mainly taken place

around the shock and the stagnation region. Approxi-

mately 47.6% of the coarse grid cells were refined. As

Fig. 11 to 12 show, the shock is very well captured.

Also, the entropy generated at the shock is properly

convected along the stream lines. In Fig. 12 it can be
seen that no overshoots or undershoots in density are

formed at the shock, and the density increases mono-

tonically behind the shock. As Fig. 12 shows, the shock
stands at axial distance between 0.060 and 0.063 from

the leading edge. This corresponds to ratio of stand-off
distance over two times the radius of curvature at the

leading edge of 0.241 to 0.252. In comparison, Ref. 21
shows an experimental value of about 0.24 for flow at

M = 5 over a cylinder.
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Figure 1. A grid system on three levels--a coarse

grid covering the entire physical domain and two prop-

erly nested fine grid levels, each consisting of several

topologically rectangular blocks.

Figure 3. Initial (coarse) grid system for NACA0012

airfoil--computations were done on only the upper half

of the symmetric grid.

Figure 2. A cuzvilineaz coarse grid system and a re-

fined grid--celLs are defined by straight lines between

nodes, resulting in fine grid cells that do not match

with the "parent" cells on the coarse grid.
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Figure 4. Refined grid around a NACA0012 airfoil--

flow at M = 0.5 and zero angle of attack.
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Figure 7. Flow over a NACA0012 airfoil atM : 0.8

and zero angle of attack---contours of pressure coeffi-
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Figure 6. Refined grid around a NACA0012 airfoil m

flow at M : 0.8 and zero angle of attack.
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Figure 8. Flow over a NACA0012 airfoil arm -- 0.8

and zero angle of attack--plot of pressure eoefllceint
versus chord.
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Figure 9. Grid system for a 26.560 wedge with a

blunt leading edge--coarse grid is 32 x 48; 47.6% of

the coarse grid cells are refined.
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edge is 0.125).
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